

 $fines\ comerciales.$

Topología I Examen VII

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2023-2024

Asignatura Topología I.

Curso Académico 2023-24.

Grado en Matemáticas.

Grupo A.

Profesor Leonor Ferrer Martínez.

Descripción Primer Parcial.

Fecha 9 de noviembre de 2023.

Para cada $x \in \mathbb{R}$, y cada $\varepsilon \in \mathbb{R}^+$, se define el subconjunto:

$$G(x,\varepsilon) = \{x\} \bigcup (]x - \varepsilon, x + \varepsilon[\cap \mathbb{Q})$$

En \mathbb{R} consideramos ahora para cada $x \in \mathbb{R}$ la familia de subconjuntos:

$$\beta_x = \{ G(x, \varepsilon) \mid \varepsilon \in \mathbb{R}^+ \}$$

Ejercicio 1 (4 puntos). Demuestra que β_x es base de entornos para una única topología \mathcal{T} en \mathbb{R} . Prueba que los subconjuntos $G(x,\varepsilon)$ son abiertos de la topología \mathcal{T} .

Para ello, hemos de comprobar las 4 hipótesis del correspondiente teorema. Dado $x \in \mathbb{R}$, tenemos que:

- V1) $\beta_x \neq \emptyset$, pues $G(x,1) \in \beta_x$, por ejemplo.
- V2) Sea $G(x,\varepsilon) \in \beta_x$. Trivialmente, se tiene que $x \in G(x,\varepsilon)$ por la definición de $G(x,\varepsilon)$.
- V3) Sean $G(x, \varepsilon_1), G(x, \varepsilon_2) \in \beta_x$. Buscamos $\varepsilon_3 \in \mathbb{R}^+$ tal que $G(x, \varepsilon_3) \subset G(x, \varepsilon_1) \cap G(x, \varepsilon_2)$. Sea $\varepsilon_3 = \min\{\varepsilon_1, \varepsilon_2\}$ y se tiene de forma directa.
- V4) Sea $G(x,\varepsilon) \in \beta_x$. Buscamos $\varepsilon' \in \mathbb{R}^+$ tal que $G(x,\varepsilon') \subset G(x,\varepsilon)$ y, para todo $y \in G(x,\varepsilon')$, buscamos $\varepsilon'' \in \mathbb{R}^+$ tal que $G(y,\varepsilon'') \subset G(x,\varepsilon)$. Sea $\varepsilon' = \varepsilon$, y la primera inclusión es trivial. Sea ahora $y \in G(x,\varepsilon) \subset]x - \varepsilon, x + \varepsilon[$. Como $]x - \varepsilon, x + \varepsilon[$ es abierto en $(\mathbb{R}, \mathcal{T})$, tenemos que $\exists \varepsilon'' \in \mathbb{R}^+$ tal que $]y - \varepsilon'', y + \varepsilon''[\subset]x - \varepsilon, x + \varepsilon[$. Por tanto, como $y \in G(x,\varepsilon)$ tenemos que $G(y,\varepsilon'') \subset G(x,\varepsilon)$.

Por tanto, β_x es base de entornos para una única topología \mathcal{T} en \mathbb{R} . Veamos ahora que $G(x,\varepsilon)$ es abierto de la topología \mathcal{T} . Para ello, veremos que $G(x,\varepsilon)$ es entorno de cada uno de sus puntos.

Sea $y \in G(x,\varepsilon)$. Hemos visto que $\exists \varepsilon' \in \mathbb{R}^+$ tal que $G(y,\varepsilon') \subset G(x,\varepsilon)$. Como $G(y,\varepsilon') \in N_y$ y $G(y,\varepsilon') \subset G(x,\varepsilon)$, tenemos que $G(x,\varepsilon) \in N_y$. Por tanto, $G(x,\varepsilon)$ es entorno de cada uno de sus puntos, y por tanto es abierto de la topología \mathcal{T} .

Ejercicio 2 (1 punto). Da una base de \mathcal{T} .

Sea el siguiente conjunto, y demostraremos que es base de \mathcal{T} :

$$\mathcal{B} = \{ G(x, \varepsilon) \mid x \in \mathbb{R}, \varepsilon \in \mathbb{R}^+ \}$$

En primer lugar, por lo visto al final del ejercicio anterior, tenemos que $\mathcal{B} \subset \mathcal{T}$. Veamos ahora que, para todo $U \in \mathcal{T}$ y para todo $x \in U$, existe $B \in \mathcal{B}$ tal que $x \in B \subset U$. Como $x \in U \in \mathcal{T}$, entonces $U \in N_x$, y como β_x es una base de enornos de x, entonces $\exists B \in \beta_x$ tal que $x \in B \subset U$.

Ejercicio 3 (1 punto). Prueba que $\mathcal{T}_u \subsetneq \mathcal{T}$. ¿Es el espacio $(\mathbb{R}, \mathcal{T})$ Haussdorf?

C) Sea $U \in \mathcal{T}_u$. Entonces, veamos que U es entorno de todos sus puntos en \mathcal{T} . Sea $x \in U$. Como $U \in \mathcal{T}_u$, entonces $\exists \varepsilon \in \mathbb{R}^+$ tal que $]x - \varepsilon, x + \varepsilon[\subset U]$. Por tanto

$$G(x,\varepsilon) = \{x\} \bigcup (]x - \varepsilon, x + \varepsilon[\cap \mathbb{Q}) \subset]x - \varepsilon, x + \varepsilon[\subset U]$$

Como $x \in G(x,\varepsilon) \subset U$, y $G(x,\varepsilon) \in N_x$, entonces $U \in N_x$ en \mathcal{T} , y por tanto $U \in \mathcal{T}$.

Para ver que $\mathcal{T}_u \neq \mathcal{T}$, sea $G(0,1) \in \mathcal{T}_u$.

$$G(0,1) = \mathbb{Q} \cap]-1,1[$$

Como $0 \in G(0,1)$, pero $\not\equiv \varepsilon \in \mathbb{R}^+$ tal que $B(0,\varepsilon) \subset G(0,1)$, entonces $G(0,1) \notin N_0$ en \mathcal{T}_u , y por tanto $G(0,1) \notin \mathcal{T}_u$.

Veamos ahora que $(\mathbb{R}, \mathcal{T})$ es T2. Dados $x, y \in \mathbb{R}, x \neq y$, como $(\mathbb{R}, \mathcal{T}_u)$ es T2, $\exists U, V \in \mathcal{T}_u \subset \mathcal{T}$, con $x \in U, y \in V$ y $U \cap V = \emptyset$. Por tanto, $(\mathbb{R}, \mathcal{T})$ sí es T2.

Ejercicio 4 (1 punto). Calcula la clausura de $G(x,\varepsilon)$ en (\mathbb{R},\mathcal{T}) .

Veamos que $\overline{G(x,\varepsilon)} = [x - \varepsilon, x + \varepsilon].$

Claramente, $G(x,\varepsilon) \subset [x-\varepsilon,x+\varepsilon]$, y $[x-\varepsilon,x+\varepsilon] \in C_{\mathcal{T}_u} \subset C_{\mathcal{T}}$. Por tanto,

$$\overline{G(x,\varepsilon)} \subset [x-\varepsilon,x+\varepsilon]$$

⊃) Sea $y \in [x - \varepsilon, x + \varepsilon]$. Veamos que $y \in \overline{G(x, \varepsilon)}$. Basta comprobar que, para todo $\delta \in \mathbb{R}^+$, se tiene que $G(y, \delta) \cap G(x, \varepsilon) \neq \emptyset$.

Como $y \in \overline{B(x,\varepsilon)}$, en $(\mathbb{R},\mathcal{T}_u)$ tenemos que $B(x,\varepsilon) \cap B(y,\delta) \in \mathcal{T}_u$ por ser intersección de abiertos. Por la densidad de \mathbb{Q} en \mathbb{R} , tenemos que:

$$B(x,\varepsilon)\cap B(y,\delta)\cap \mathbb{Q} = \]x-\varepsilon, x+\varepsilon[\ \cap\]y-\delta, y+\delta[\ \cap \mathbb{Q} \ \neq \emptyset \qquad \forall \delta\in \mathbb{R}^+$$

Por tanto,

$$\emptyset \neq \]x-\varepsilon, x+\varepsilon[\ \cap \]y-\delta, y+\delta[\ \cap \mathbb{Q} \subset G(x,\varepsilon)\cap G(y,\delta) \qquad \forall \delta \in \mathbb{R}^+$$

y tenemos entonces que $y \in \overline{G(x,\varepsilon)}$.

Ejercicio 5 (1 punto). Describe la topología $\mathcal{T}_{\mathbb{R}\setminus\mathbb{Q}}$.

Veamos que, para todo $x \in \mathbb{R} \setminus \mathbb{Q}$, se tiene que $\{x\} \in \mathcal{T}_{\mathbb{R} \setminus \mathbb{Q}}$.

$$G(x,\varepsilon)\cap\mathbb{R}\setminus\mathbb{Q}=(\{x\}\cup]x-\varepsilon,x+\varepsilon[\ \cap\mathbb{Q})\cap\mathbb{R}\setminus\mathbb{Q}=\{x\}\cap\mathbb{R}\setminus\mathbb{Q}=\{x\}$$

Por tanto, como $G(x,\varepsilon) \in \mathcal{T}$, entonces $G(x,\varepsilon) \cap \mathbb{R} \setminus \mathbb{Q} \in \mathcal{T}_{\mathbb{R} \setminus \mathbb{Q}}$. Por tanto, $\{x\} \in \mathcal{T}_{\mathbb{R} \setminus \mathbb{Q}}$. Como la unión de abiertos es abierta, entonces:

$$\mathcal{T}_{\mathbb{R}\setminus\mathbb{Q}} = \{\{x\} \mid x \in \mathbb{R} \setminus \mathbb{Q}\} = \mathcal{P}(\mathbb{R} \setminus \mathbb{Q}) = \mathcal{T}_{disc}|_{\mathbb{R}\setminus\mathbb{Q}}$$

Por tanto, tenemos que es la topología discreta en $\mathbb{R} \setminus \mathbb{Q}$.

Ejercicio 6 (2 puntos). Estudia si $(\mathbb{R}, \mathcal{T})$ es 1AN o 2AN.

Veamos que $(\mathbb{R}, \mathcal{T})$ es 1AN. Para todo $x \in \mathbb{R}$, veamos que el siguiente conjunto es una base de entornos de x:

$$\beta_x' = \left\{ G\left(x, \frac{1}{n}\right) \mid n \in \mathbb{N} \right\}$$

Como $1/n \in \mathbb{R}$ para todo $n \in \mathbb{N}$, entonces $\beta'_x \subset \beta_x$. Veamos ahora que, para todo $\varepsilon \in \mathbb{R}^+$, existe $n \in \mathbb{N}$ tal que $G(x, 1/n) \subset G(x, \varepsilon)$. Esto es cierto ya que consideramos $n \in \mathbb{N}$ tal que $1/n < \varepsilon$, o equivalentemente $n > 1/\varepsilon$. Esto siempre es posible ya que $\{1/n\} \to 0$.

Por tanto, β'_x es base de entornos de x numerable, y por tanto $(\mathbb{R}, \mathcal{T})$ es 1AN.

Veamos ahora que no es 2AN. Por reducción al absurdo, supongamos que $(\mathbb{R}, \mathcal{T})$ es 2AN. Entonces, como esta propiedad es hereditaria, $(\mathbb{R} \setminus \mathbb{Q}, \mathcal{T}_{\mathbb{R} \setminus \mathbb{Q}})$ sería 2AN. No obstante, su base más económica es $\mathcal{B}' = \{\{x\} \mid x \in \mathbb{R} \setminus \mathbb{Q}\}$, que claramente no es numerable por no serlo $\mathbb{R} \setminus \mathbb{Q}$. Por tanto, llegamos a un absurdo, y $(\mathbb{R}, \mathcal{T})$ no es 2AN.

Ejercicio 7 (1 punto extra). Prueba que para toda sucesión $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}\setminus\mathbb{Q}$ que converja a un punto $x_0\in\mathbb{R}$, existe $n_0\in\mathbb{N}$ tal que $x_n=x_0$ para todo $n\geqslant n_0$, y por tanto $x_0\in\mathbb{R}\setminus\mathbb{Q}$.

Como la sucesión converge a x_0 , entonces dado $\varepsilon \in \mathbb{R}^+$, $\exists n_0 \in \mathbb{N}$ tal que $x_n \in G(x_0, \varepsilon)$ para todo $n \geq n_0$. No obstante, $x_n \in \mathbb{R} \setminus \mathbb{Q}$ para todo $n \in \mathbb{N}$, y además $G(x_0, \varepsilon) \setminus \{x_0\} \subset \mathbb{Q}$, por lo que $x_n = x_0$ para todo $n \geq n_0$.

Además, como $x_n \in \mathbb{R} \setminus \mathbb{Q}$ para todo $n \in \mathbb{N}$, entonces $x_0 \in \mathbb{R} \setminus \mathbb{Q}$.